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complexity of a bidder’s problem.
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1. Introduction
Theory, experiment, and practice suggest that, when
bidder valuations for multiple objects are superad-
ditive, combinatorial auctions are needed to increase
efficiency, seller revenue, and bidder willingness to
participate (Bykowsky et al. 2000, Rassenti et al. 1982,
Ledyard et al. 2002). A combinatorial auction is an
auction in which bidders are allowed to express bids
in terms of packages of objects. The now-famous FCC
spectrum auctions are a good example of the rele-
vance of these issues. In 41 auction events from 1994
to 2003, the FCC used what is known as a Simulta-
neous Multiple Round (SMR) auction to allocate spec-
trum and raise over $40 billion in revenue. This auc-
tion format does not allow package bidding. The FCC
auctions also divide the spectrum by geographic loca-
tion. It is reasonable to expect that some bidders might
receive extra benefits by obtaining larger, more con-
tiguous portions of the spectrum. A firm might enjoy
cost savings if they could purchase two adjacent loca-
tions. However, without package bidding, a bidder
cannot express that preference, potentially lowering
the efficiency and revenue of the auction. If the bid-

der attempts to acquire both licenses through bidding
on the licenses individually, they might be forced to
expose themselves to potential losses. The high num-
ber of bidder defaults on payments might, in part,
be evidence of losses caused by the lack of package
bidding.1 In response to these difficulties, the FCC
plans to allow package bidding in future auctions
(Federal Communications Commission 2002, Dunford
et al. 2001). In particular, the FCC in its Auction #31
for the upper 700 MHz band, affords bidders the abil-
ity to submit bids for packages of licenses. The par-
ticular design presented in this paper was developed
prior to the FCC package auction design. Indeed, one
of the major features of the FCC design was clearly
influenced by the pricing rules we developed herein.
Specifically, the FCC will use a “current price esti-
mate” in Auction #31 that will provide a price for each
license and these prices will be used to determine the
minimal acceptable bids in the next round of bidding.
We discuss this in more detail below in §3.3.

1 An extreme example can be found in the PCS C Block auctions,
where there were $874 million in defaults (in Landler 1997).
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While the potential utility of combinatorial auctions
is considerable, combinatorial auctions have not yet
reached their full potential in practice.2 The successful
implementation of a combinatorial auction requires
one to overcome a number of hurdles. Two widely
recognized and discussed issues are:
(1) the computational complexity of the winner

determination problem, and
(2) the complexity of the bidding environment for

the bidder.
Computational complexity comes from the fact that

determining a set of winning bids—those that max-
imize the sum of the bid prices subject to feasibil-
ity constraints—is NP-complete. Rothkopf et al. (1998)
have shown that computational issues can be reduced
via limitations on acceptable bids and other strategies.
Others have found promising algorithms (Sandholm
et al. 2001), and Andersson et al. (2000) have shown
that CPLEX software is fairly effective in solving the
winner determination problem in combinatorial auc-
tion simulations. For problems of reasonable size, the
computational complexity of the winner determina-
tion problem is simply not the limiting factor.3

The computational complexity of the bidders’ prob-
lems is more of an issue in practice. Bidders must
determine their valuations for all subsets of items
they are interested in (up to a maximum of 2K values
if they are interested in K items). Then they must for-
mulate an optimal bidding strategy given those val-
uations. If the bidders make incomplete or incorrect
calculations, the efficiency or revenue an auction will
generate can be significantly reduced.
Several approaches have been taken to reduce these

difficulties. Some have proposed using the Vickrey
sealed-bid auction. Under a Vickrey auction, bidders
have a dominant strategy to truthfully report their

2 There are an increasing exceptions, including Sears Logistics
Services (Ledyard et al. 2002), the Automated Credit Exchange
(Ishikida et al. 2001), the course registration auction at the Chicago
Business School (Graves et al. 1993), and the Mars IBM procure-
ment auction (Davenport et al. 2003).
3 We can also report some additional data from Net Exchange
(nex.com), based on simulations with a 200 MHz PC. They cre-
ated test runs where the number of bids were four times the num-
ber of items, where 1/3 are multi-item bids, where 5% of the bids
involve more than three items, and where OR groups were allowed.
For problems based on hundreds of items (including runs in the
500–800 range), using DASH Express, the optimum was always
found very quickly. For 1,000 items, 50% of the problems com-
puted to the optimum in less than 30 seconds. 90% computed to
the optimum in less than 30 minutes. 95% computed to within 2%
of the best upper bound (the relaxed linear programming solution)
in less than 30 minutes. And, in one other observation, Ledyard
et al. (2002), the winner-determination problems for the Sears logis-
tics auctions for 850 items always solved in less than 30 minutes,
using now totally outdated 1992 technology. With modern technol-
ogy and algorithms, fairly large problems are almost always easily
solved in a timely fashion.

values to the auctioneer. While this would elimi-
nate strategic complexity, it would not reduce the
complexity associated with valuation determination.4

Some have suggested a pay-what-you-bid, sealed-
bid, one-shot auction (Rassenti et al. 1982), but this
brings back the strategic complexity without reducing
the valuation computation complexity. Others have
suggested using progressive auctions, similar to an
English auction, to reduce the cognitive burden on the
bidders in both valuation and strategic computation
(Banks et al. 1989, Parkes 1999). Two candidate auc-
tion designs in this area are the continuous package
bid auction called the Adaptive User Selection Mecha-
nism (AUSM) first proposed by Banks et al. (1989) and
the SMR auction used by the FCC (Milgrom 2000).
The idea in each of these is that bidders need only
compute valuations when necessary, and that bidders
have time to focus on and compute strategies.
In this paper, we take the best features of these auc-

tions, add a new element, and create a new design
we call Resource Allocation Design (RAD) that pro-
duces in our experiments higher efficiencies, higher
revenues, and a shorter duration than the original
designs. We take the issues of computational and cog-
nitive complexity seriously and formulate a combina-
torial auction mechanism that attempts to ease those
burdens. The features we borrow are: (1) package bid-
ding from AUSM, and (2) an iterative format, eligi-
bility, and minimum bid increments from SMR. The
feature we add is (3) a method to provide prices that
will guide bidders to desirable outcomes. We use an
iterative auction that gives bidders, at each iteration,
a vector of prices—one for each object—that new bids
must beat in order to be accepted. Bidders need not
consider separate prices for each subset of objects—
a subset price will simply be the sum of the prices
for each item in the subset—so the information the
bidders need to process is, in some sense, small. (See
Nisan and Segal 2003 for a precise analysis of the size
of the messages.) Bidders need not bother comput-
ing valuations for items whose prices are obviously
higher than the valuations would be, thus reducing
that dimension of computational complexity.
We use the test bed approach of experimental eco-

nomics to establish the performance improvements of
RAD over SMR and AUSM. There is no theory to use
to compare auctions, especially if one wants to take
account of the limitations of bidders’ cognitive skills.
We have found that computer simulations also fail to

4 There are other problems with Vickrey auctions, many of which
were originally noted, discussed, and explained by Groves and
Ledyard (1977a, b) in the context of public goods. Banks et al. (1989)
also discuss the problems and investigate an iterative version of
Vickrey. It was the unsatisfactory performance of that mechanism
that led to the development of AUSM.
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capture many of the important details of human cog-
nition. One cannot use the data from auctions that
occur in practice because it is not possible to know the
fundamentals—the true values of the items for each
bidder.5 Therefore, if progress is to be made we must
adopt the approach of an engineer’s wind tunnel and
turn to the laboratory for data. The use of the labo-
ratory as a test bed for complex auctions in complex
environments began with Ferejohn et al. (1979), Smith
(1979), Grether et al. (1981), and Rassenti et al. (1982).
This methodology has proven to be fairly successful
in providing guidance for the design of a variety of
implemented auctions (Plott 1997, Ishikida et al. 2001,
Ledyard et al. 1997). Building on knowledge from the-
oretical and practical experience, one can create test
bed environments in the laboratory that exhibit as
much complexity or simplicity as one wishes. In these
environments, one can test any auction. With labora-
tory control, one can calculate performance measures
unknowable in the field. One can precisely answer
questions such as: Did the highest value bidders win
the items, was there a bidder who wanted a partic-
ular configuration and did not get it, and were there
bidders who, because of the auction design, bid more
for an item than it was truly worth to them?
We evaluate the RAD design in the lab, using both

a complex and a simple test bed. We are able to com-
pare the performance of RAD to a version of the SMR
auction used by the FCC. Because we used the same
test bed as in previous experiments, we are also able
to compare the performance of RAD, when possible,
with that of the AUSM combinatorial auction pro-
posed by Banks et al. (1989), which is widely regarded
as one of the first combinatorial auction mechanisms.
In §2, we describe the background of our search for

a high-performance multiobject auction design. In §3,
we formally describe the SMR and AUSM designs
and the RAD auction. In §§4 and 5, we describe the
test bed and the performance measures we use to
evaluate the design. In §6, our findings are offered.
Finally, in §7, we provide our conclusions and discuss
the work that remains to be done.

2. The Context
As most theorists realize, it is relatively simple to
describe a demand-revealing, efficient auction. A nat-
ural extension of the famous Vickrey sealed-bid auc-
tion will award the objects to the highest-valuing
bidders and eliminate any incentive for them to mis-
represent their preferences. If we accept that the
winner-determination problem is not an issue, then

5 One cannot econometrically estimate them from the data unless
one knows what the strategic behavior of the agents was, and that
behavior is invertible.

the Vickrey auction appears to eliminate the strate-
gic complexity facing the bidder. However, the bidder
still faces the complexity of calculating and express-
ing these valuations.6 If K items are being auctioned,
each agent’s bid would need to be 2K numbers—
potentially creating a very large, very complex com-
munication problem. Further, if there is any affiliation
in the values of bidders, then sealed-bid auctions of
this sort are thought to be less efficient than auctions
that allow bidders to learn as they bid (Milgrom and
Weber 1982).7 Even when only one object is for sale,
bidders in experimental sessions often do not under-
stand the demand-revealing incentives of the Vickrey
auction (Kagel et al. 1987).
Progressive auctions, such as the English auc-

tion, usually perform quite well in the laboratory
(Coppinger et al. 1980). There are two types of pro-
gressive auctions one might consider: iterative and
continuous auctions. A continuous auction is simi-
lar to the classic English auction, where bids can be
submitted at any time. Iterative auctions proceed in
a series of rounds, which last a specified period of
time. During a round, bidders have the opportunity
to place bids before the auctioneer considers any of
the bids placed in the round. Once a bid is submitted,
in the case of a continuous auction, or at the end of
a round, in the case of an iterative auction, the auc-
tioneer processes the bid(s) and identifies provision-
ally winning or standing bids. These are the bids that
will win if no new bids are forthcoming. In all cases,
the auctioneer then provides information back to the
bidders. The process repeats until a stopping rule is
satisfied. At that time the provisionally winning bids
become winning bids.
To understand the possibilities and choices fac-

ing the designer of multiobject auctions, we begin
by recalling the key features of two vastly differ-
ent designs: the SMR design (Milgrom 2000) and
the AUSM (Banks et al. 1989). The SMR design
allows only single-item bids, is iterative, and has an
eligibility-based stopping rule (i.e., a use-it-or-lose-it
feature) driven by a minimum increment requirement
for new bids. The SMR design was used extensively
by the FCC to run early bandwidth auctions. On the
other hand, AUSM allows package bids, is continu-
ous, and is stopped at the discretion of the auction-
eer. An iterative version of AUSM was used by Sears

6 In fact, Sandholm (2000) has shown that, if valuation computation
is costly, the positive strategic implications of the Vickrey auction
may not hold. Also, see Larson and Sandholm (2001b, a) for a fur-
ther discussion of the strategic complexity of auctions.
7 Dasgupta and Maskin (2000) show that the Vickrey auction could,
in theory, be extended to this setting by allowing for bids to be
functions that allow each bidder to state what his value would have
been if the other bidders’ information had been revealed.
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Logistics Services to procure trucking services (Led-
yard et al. 2002). Three aspects of the design are the
same for each: Winning bidders pay what they bid,
provisionally winning bids are determined by max-
imizing potential revenue subject to feasibility, and
provisionally winning bids remain as a standing com-
mitment until replaced by another provisional winner.
Both the SMR and AUSM auctions represent a com-

promise, the result of a sequence of design choices.
Each choice often leads to one side of a seeming
unavoidable trade-off. Therefore, each auction process
has its potential weaknesses. In this paper we focus
on potential failures in performance in the areas of
efficiency, revenue, bidder losses, complexity, and the
time to complete an auction.
In most discussions of the design of multiobject

auctions, the primary goals have either explicitly or
implicitly been high efficiency and/or high revenue.
The goals of maximizing efficiency and maximizing
revenue are not antithetical. In fact, the amount of rev-
enue collected is generally limited by the efficiency of
the auction. In single-item auctions, contingent upon
sale, maximal revenue usually occurs by maximizing
efficiency and then extracting as much of the sur-
plus as possible (Myerson 1981). This approach does
not always work in multiobject auctions.8 In envi-
ronments without income effects, such as quasi-linear
preferences, what trade-off there is can be most easily
seen in the following identity:

Efficiency×Maximal Possible Surplus
≡ Seller’s Revenue+Bidders’ Profits�

High efficiency and low revenue can occur if and only
if bidder profits are high, which might occur under
collusion, and high revenue and low efficiency can
occur if and only if bidders incur losses.
Both the SMR and AUSM auction processes have a

difficult time consistently generating 100% efficiency
across a variety of environments (Ledyard et al. 1997,
Kwasnica et al. 1998). The SMR mechanism, because it
only allows single-item bids, faces the exposure prob-
lem. The exposure problem occurs in situations where
bidders’ values are superadditive. In order to win a
package that the bidder values more than the sum of
the individual items in the package, the bidder might
need to bid above her value on the individual items.
If the bidder does not end up winning the package,
this can expose the bidder to losses. Bidders who are
aware of this problem might stop bidding in order to
avoid the risk of losses causing low efficiencies and

8 In spite of Williams (1999), who identifies the optimal, efficient
auction to be a Vickrey-Groves mechanism, we do not know that
the optimal revenue-maximizing auction is always efficient. In fact
Armstrong (2000) suggests it may not be so.

seller revenue. To combat the exposure problem, the
FCC allowed provisional winners to withdraw with a
penalty. Porter (1999) analyzes the effect of this rule
and finds that, although efficiencies are higher, so too
are bidder losses. The AUSM mechanism, because it
allows package bids, does not suffer from the expo-
sure problem, but faces the threshold problem. The
threshold problem occurs when a number of bidders
for small packages must coordinate their efforts to
unseat a bidder for a big package. In this situation
each bidder has the incentive to allow the other bid-
ders to be the ones who increase their bid in order to
displace the big bidder. In principle, all bidders may
fail to raise their bids, allowing the big package to win
even if it should not have. The threshold problem may
cause low efficiencies as collections of small bidders
may not be able to coordinate their bids to dislodge
a large, inefficient bidder. To combat the threshold
problem, AUSM is often used with a standby queue—
a public bulletin board on which potentially com-
binable bids can be displayed.9 The use of a queue,
however, shifts the computational burden to the bid-
ders; they must now consider the bids in the queue
when making a new bid.
While it is easy to measure efficiency, seller rev-

enue, and bidder losses, it is harder to measure the
complexity of a mechanism or the costs of the length
of time to complete the auction.10 Nevertheless, we
can make a few observations about the performance
of the SMR and AUSM designs. Because the SMR
auction proceeds in measured steps and because bid-
ders seem to have a relatively simple information-
processing problem at each step, most consider it a
simple mechanism.11 However, because of this slow
but steady approach, SMR auctions can take a very
long time to complete. The FCC’s Broadband PCS
D, E, and F Block auctions lasted 276 rounds span-
ning 85 days. AUSM proceeds in a seemingly dis-
organized manner, with bids allowed in any order,
stopping when no new bids are forthcoming or the
auctioneer deems the auction to be at an end. Because
of this, AUSM finishes quickly. However, many feel
that this places a difficult information-processing bur-
den on bidders that, together with the standby queue,
makes AUSM a very complex mechanism.
So, each mechanism has both desirable and unde-

sirable performance characteristics. The obvious ques-
tion then is: Can we do better than both? In particu-
lar, can we take the successful design aspects of each,

9 It is shown in Banks et al. (1989) that the queue increases both
efficiency and revenue in continuous auctions.
10 In the field, it is difficult, if not impossible, to measure any of
these variables. In the lab, because we know the induced valuations
of bidders, we can directly measure efficiency, revenue, and losses.
11 Formulating an optimal strategy to win packages of items when
bidding is restricted to single-item bids is actually quite difficult.



Kwasnica et al.: A New and Improved Design for Multiobject Iterative Auctions
Management Science 51(3), pp. 419–434, © 2005 INFORMS 423

perhaps augment them a bit, and create a hybrid that
dominates both? Based on the research reported in this
paper, we suggest that the answer is yes.

3. The Auctions
Rather than providing a fully general framework, in
this paper we will focus on the particular designs
we evaluate. Let I = �1� � � � �N � represent the set of
bidders, K = �1� � � � �K� represent the set of objects to
be sold and t = 1�2�3� � � � represent the iterations or
rounds. In general, a bid can be a very abstract entity
involving complex contingent logic.12 In this paper,
we restrict our attention to very simple bids. A bid
is a pair b = 
p�x, where p is a positive real number
representing the bid price and x ∈ �0�1�K represents
the items desired.13 A bid here signifies, “I am willing
to pay up to p for the collection of objects for which
xk = 1 if and only if I get all of them.” In the auctions
we analyze, winners will actually pay what they bid.
Begin by assuming we are in round t and all N bid-

ders have submitted their bids. The set of bids placed
by bidder i in round t is Bit , and Bt =

⋃
i�I B

i
t is the set

of all submitted bids. An arbitrary element of Bt is
expressed as bj = 
pj� xj.
All the auction designs use a straightforward allo-

cation rule: Provisionally award the items to the col-
lection of bids that would yield the highest revenue.
We solve the following allocation problem:

max
∑
j∈Bt
pj�j (1)

subject to

�j ∈ �0�1� for all j ∈ Bt
and ∑

j∈Bt
x
j

k�
j ≤ 1 for all k= 1� � � � �K�

If there is only single-item bidding, this simply
selects the highest bidder for each item. With pack-
age bidding, the combinatorial optimization problem
is equivalent to a set-packing problem on a hyper-
graph. We acknowledge that it is well known that
if the number of objects and bids is large, then one
cannot necessarily guarantee that an optimal solution
will be found in a reasonable amount of time. How-
ever, it should also be noted though that computation
is increasingly less of an issue in combinatorial auc-
tions (see Footnote 3). Of course, computation was

12 See, for example, Ishikida et al. (2001), Rassenti et al. (1982), and
Grether et al. (1981). Recent work by computer scientists empha-
sizes expressiveness (Nisan 2000). We discuss some of this in §3.3.
13 This structure can easily be generalized to cases where there are
multiple copies of items available. We treat each k = 1� � � � �K as a
single indivisible object.

never an issue in any of the results reported in this
paper due to the relatively small scale of the test cases
examined (10 objects and 5 bidders).
Let �∗t be a solution to this problem. If �

∗j
t = 1, we

say that bid j is provisionally winning in round t. Let
Wt = �
pj� xj ∈ Bt � �∗jt = 1� be the collection of provi-
sionally winning bids. Then i’s winning bids are the
set Wi

t ≡ Bit ∩Wt . There is no restriction placed on the
number of winning bids for each particular bidder;
each bid placed by an individual is considered inde-
pendently from the other bids placed. An obvious ini-
tial condition is to have W0 =
.
If the auction stops at this round, for each j ∈Wi

t ,
bidder i will receive the items for which xk = 1 and
will pay pj to the auctioneer. If the auction does not
stop, then all provisional winners are automatically
resubmitted in round t+ 1, so Wi

t ⊆ Bit+1 for all i.
3.1. The SMR Auction
The basic SMR auction design requires only a few
new rules in addition to those from above. First, only
single-item bids are allowed. That means for all i,
and t ∑

k∈K
xk = 1 for all 
p�x ∈ Bit� (2)

Second, SMR uses eligibility to force active and mean-
ingful bidding. Introduced by Paul Milgrom as the
truly unique part of the SMR design, eligibility rules
are designed to encourage active bidding, while not
allowing the auction to stop too quickly. A soft close
makes an efficient allocation more likely.
Eligibility limits the number of items a bidder can

bid on in a round as a function of the bidder’s past
bidding behavior. Specifically, a bidder’s eligibility is
the number of distinct objects he is allowed to bid on
in a round.14 Let Ait−1 be the number of distinct items i
bid on in round t− 1,15

Ait−1 =
∣∣�k � xjk = 1 for some 
p�x in Bjt−1�∣∣� (3)

Initially bidders are allowed to bid on all items,
Ai0 =K. In round t, a collection of bids Bit for i satisfies
eligibility if and only if

Ait ≤Ait−1� (4)

That is, a collection of bids is eligible if and only if the
new bids plus last round’s winning bids are placed
on no more than Ait−1 objects.

16 Eligibility can easily

14 In the FCC spectrum auctions, a weighted measure of eligibility
was used. Objects were weighted by their MHz Pops. Let wk be
the weight assigned to k. Let �it−1 = �k � i has an active bid on k in
round t− 1�. A bidder’s eligibility in t is then Ait−1 =

∑
k∈�it−1

wk.
15 We use �A� to indicate the cardinality of the set A.
16 In the early rounds of the FCC spectrum auctions bidders were
allowed to bid on more than Ait−1 items by multiplying Ait−1
by r > 1.
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be checked incrementally as each new bid is offered.
Because eligibility limits the items a bidder bids on
by the number of items they bid on in the previous
round, eligibility encourages early bidding.
The stopping rule is obvious once eligibility is

imposed.

Stop at the end of t if
∑
i∈I
Ait ≤K� (5)

If eligibility satisfies this constraint, no bidder will
be able to bid on anything other than the items they
are currently provisionally winning. Therefore, own-
ership will not change in any subsequent period.17

While eligibility encourages bidders to place bids,
a bidder could repeatedly submit a small bid for the
package of all items in order to maintain her eligibil-
ity. Then, Ait =K, and the auction never ends. To drive
the auction to finish, we also need to force new bids
to be serious, so a minimum increment rule is imposed.
It is based on a vector of single-item prices �t , which
are known at the start of round t. In the SMR design,
the price vector �t+1 is simply the high price from t.
That is,

�t+1k = pk if 
p�x ∈Wt and xk = 1� (6)

We let �1k = 0 for all k, but one could allow �1 to be
any reserve prices. Let Ni

t = Bit\Wi
t−1 be the set of new

bids. Then we require that

p≥∑
k∈K
xk
�

t
k+M for all 
p�x ∈Ni

t � (7)

where M is a minimum bid increment chosen by the
auctioneer.18

Therefore, at the start of each round, each bid-
der i ∈ I knows the objects for sale K, the prices
on each object �t , her winning bids from the previ-
ous round Wi

t−1, and her eligibility A
i
t−1. Each bid-

der then chooses new bids Ni
t satisfying Equations (4)

and (7). By the resubmittal rule, Bit =Wi
t−1 ∪Ni

t . Using
the revenue-maximizing allocation rule described by
Equation (1), the auctioneer computes Wt . The auc-
tioneer computes Ait for all i. Using (5), the auction is
then stopped or continues to round t+ 1.
The rules given by Equations (1)–(7) describe what

we have called the SMR design.

3.2. The AUSM Design
Because the AUSM design is a continuous auction,
it is somewhat more difficult to formally define the
AUSM rules using the notation developed earlier.
Banks et al. (1989) provide a more complete defini-
tion. One can think of a continuous auction as an

17 As a referee correctly pointed out, this stopping rule can allow
the auction to stop early if all bidders do not bid on some object(s).
18 The minimum increment could be altered over time, but we
forego that degree of freedom in this paper.

iterative auction where only a single bid is placed in
each round, or �⋃i∈I N i

t � = 1. As in the SMR design,
in the basic AUSM design, this new bid is considered
along with the previous provisionally winning bids
Bit =Wi

t−1∪Ni
t in solving the allocation problem given

by Equation (1). This rule makes it very difficult for a
new bid to win because it must independently raise
the surplus of the allocation problem. The AUSM with
a standby queue avoids this problem by requiring that
all bids placed in previous rounds are considered in
each iteration: Bit = Bit−1 ∪Ni

t .
19

The basic AUSM design does not place any restric-
tions on the types of bids placed. AUSM does not
use an eligibility calculation, prices �t , or a minimum
increment requirement to drive bidding. While the
actual stopping rule may be at the final discretion of
the auctioneer, a typical rule will take the form of a
decision to stop the auction if no new bids have been
submitted in a certain time period.

3.3. The RAD Design
This design represents a serious attempt to make
package bidding work in the context of a multiob-
ject, iterative auction. It shares a number of similar-
ities with the auction designs discussed previously.
Like the SMR design, the RAD design is iterative, has
an eligibility-based stopping rule, forces a minimum
bid increment, and computes prices for each item for
sale. Like the AUSM design, the RAD design allows
package bidding. The key difference in design from
the SMR approach is that package bids are allowed
and a new pricing rule is introduced. Allowing pack-
age bids is accomplished by simply eliminating Equa-
tion (2) as a restriction on new bids.
Some more recent auction designs allow bidders to

submit “exclusive or” (XOR) bids that allow a bid-
der to identify a subset of her bids and require that
at most one of the bids in that subset be accepted.20

Parkes (1999) and Ausubel and Milgrom (2002) are
recent examples that allow this more expressive bid-
ding language. In our structure, we allow any number
of a bidder’s bids to be accepted. Although we were
aware of the utility and power of XOR bids at the
time we were running the experiments reported in
this paper, we believed that the results would be more
informative and persuasive if we modified the SMR
in as few ways as possible.

19 In practice, the auctioneer posted Bit−1 and required the new bid-
der to declare the combination of previously placed, but not pro-
visionally winning, bids that beat the current winning bids when
combined with her new bid. Thus, the computational burden was
shifted to each bidder.
20 The value of XOR bids was actually recognized even in the
most early combinatorial auction design (Rassenti et al. 1982). See
Sandholm (2002a, b) for a formal introduction to XOR bidding
languages.



Kwasnica et al.: A New and Improved Design for Multiobject Iterative Auctions
Management Science 51(3), pp. 419–434, © 2005 INFORMS 425

Pricing is a bit more subtle. Game theory provides
one suggestion—construct Vickrey prices for the auc-
tion. Vickrey prices are personalized prices that have
been shown to eliminate all strategic incentives for
bidders. Assuming bidders have correctly formulated
their valuations, bidders should be willing to submit
a full, honest report of those values to an auctioneer
who has committed to Vickrey prices. Therefore, in
theory, if bidders are faced with Vickrey prices they
should realize that their only strategy is to simply bid
their value for each particular combination. In fact,
if Vickrey prices are used, then the auction can be
run in one round (effectively a sealed-bid auction).
However, this approach has a number of drawbacks.
First, it is not clear that bidders will interpret these
bids correctly. In laboratory experiments with Vickrey
auctions for only one object, bidders systematically
deviate from the ideal strategy of simply stating one’s
value. Second, in an auction of any size, bidders may
not be able to submit all of their potentially desired
packages in one round. It would require messages of
2K numbers. Finally, if one views bidders as “learn-
ing” about their valuations and profitable bids in the
course of the auction, Vickrey prices provide little
information to the bidder about potentially profitable
combinations of new bids. One could, of course, try
to create an iterative Vickrey-type auction. This was
done in Banks et al. (1989) with little success. The
interested reader should consult the discussion there.
A second potential approach is closely related to

the economic theory of competitive equilibrium. A set
of prices—one for each object—is said to consti-
tute a competitive equilibrium if, given these prices,
the supply of objects equals demand (i.e., excess
demand is zero). This approach was explored a bit
by Bykowsky et al. (2000), where it was shown that
if one simply prices the items for auction, com-
petitive equilibrium prices may not exist because
of the nonconvexities caused by complementarities.
Bikhchandani and Ostroy (2002) took this further and
looked at personalized (individual specific) prices on
packages. They were able to provide several possi-
bility results. However, from the point of view of
auction design, both of these approaches leave some-
thing to be desired. First, from Bickchandani and
Ostroy, we learn that we may need 2K prices and
so would be back in the communicatively difficult
world of Vickrey. Second, competitive equilibrium is
just that—an equilibrium theory. It is silent on the
dynamics of price discovery—unless one wants to
adopt the Walrasian tâtonnement, a process that does
not work well in the laboratory because it requires
recontracting, which opens up all sorts of possibilities
for nonconstructive manipulation. It is our belief that
the advantage of well-designed iterative auctions over
one-shot auctions is that they allow orderly discovery

of alternatives and prices because important feedback
information is provided to bidders between rounds.
So, we turn to a third and, ultimately, more produc-

tive approach. We restrict ourselves to only pricing
items so as to keep communication complexity to a
minimum. We then look for a pricing rule that will
convey information to bidders about opportunities in
the next bidding round. Three properties seem impor-
tant for this: (a) all accepted bids should, if they were
to pay these prices, pay something less than or equal
to what they bid; (b) all losing bids should, if they
were to pay these prices, pay something more than
what they bid—indicating they needed to bid higher
in order to win; and (c) new bids that are willing to
pay more than the price of their bundle at those prices
should have a good opportunity to win—that is, the
prices ought to “guide” new bids to collections and
values that can increase revenues.21

To insure (a), to keep computation simple, and to
retain the “pay what you bid” nature of SMR, we
chose to require that prices �tk satisfy

∑
k∈K �tkx

j

k = pj
for all winners. Insuring (b) is a bit more difficult.
Let Lt = Bt\Wt be the losing bids at t. To have (b)
we would need a set of prices, �t , such that pj =∑
k∈K �tkx

j

k for all j ∈Wt and pj ≤
∑
k∈K �tkx

j

k for all j ∈ Lt .
If prices satisfy these equations, then the winning
bidders would be paying their bid, and losing bid-
ders would see that the prices were greater than their
bid. Unfortunately, once package bidding is allowed
and Equation (1) is used to decide winners, it can no
longer be guaranteed that such prices exist. So we
must turn to an approximation of the ideal. There are
many ways to do this. We choose one we believe,
and the experimental evidence supports these beliefs,
also provides good interround signals about opportu-
nities, and lack of opportunities, for successful bids.
To compute RAD prices �t+1, we begin by solving the
following problem:22

min
�t�Z�g

Z (8)

21 A related approach is to design an agent that efficiently queries
bidders about their valuations (Conen and Sandholm 2001). How-
ever, in our experimental setting, the issue of value elicitation was
not an issue. One still needs to design an auction that helps bidders
know what to do with their valuations.
22 One must recognize the pioneering work of Rassenti et al. (1982).
They proposed a sealed-bid combinatorial auction (RSB auction)
to solve an airport slot allocation problem and introduced the use
of prices computed from a relaxed problem. They also provided
experimental evidence as to the capability of their mechanism. The
computation we use is a bit different from theirs, primarily for one
reason. Because theirs is not an iterative process, the RSB prices are
simply a way to collect dollars from the bidders and are not used as
an information device. We need our prices to generate good signals
during iteration.
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subject to ∑
k∈K
�tkx

j

k = pj for all 
pj� xj ∈Wt

∑
k∈K
�tkx

j

k+ gj ≥ pj for all 
pji � x
j  ∈ Lt

0≤ gj ≤Z for all 
pji � x
j  ∈ Lt

�t ≥ 0�
Problem (8) selects a set of prices that ensures that

revenue collected from the prices exactly equals the
dollar amount for each winning bid; for losing bids
it attempts to set prices that keep the package out
with as little distortion as possible. The variable gj is
the amount for each losing package that ensures that
the bid is not affordable.23 We then want to find the
smallest such value across all losing packages so that
the distortion of the information is minimized. Let g∗

and Z∗ be a solution to (8). At the prices �t there may
be some losing bids for which

∑
k∈K �tkx

j

k ≤ pj , falsely
signaling a possible winner. Such is the nature of
package bidding. On the positive side, such bids can
be resubmitted if pj− 
∑k∈K �tkx

j
t  is large enough. Fur-

ther, Equation (8) is designed to minimize the maxi-
mum violation of the inequalities for losing bundles.
In fact, if ideal prices exist, they will be the solution
and gj∗ = 0 for all bj ∈ Lt .
At this point it may still be possible to further

lower some of the gj that, in the first solution, sat-
isfy 0 ≤ gj ≤ Z∗. Therefore, to further the computa-
tion of �t , a sequence of iterations of Equation (8)
is performed. We lexicographically lower as many gj

as possible. Therefore, at this point we have satis-
fied the desired property (a) and have done about
as well as we can on property (b). What about (c),
which asks that prices provide good signals about
new bids with good opportunities to win? If the solu-
tion to Equation (8) after lexicographic minimization
is unique, there is no more we can do. However, in
many cases, the solution will not be unique, and we
have an opportunity to improve. We know that the
prices indicate, for all of the packages that were sub-
mitted in the previous round, what one would have to
bid to have any chance of inclusion in the next round,
assuming all other bids are resubmitted. As a result,
the only way to improve on this is to signal where a
new package might be successful. New packages will
be successful if they can be combined with losers from
the last round to bump a winner from the last round
out of the solution, so we will finish the price com-
putation in a way that provides relevant information.

23 This is a little bit like two-part pricing, a well-known solution to
pricing with nonconvexities, but because the losers never pay, the
second part—the g—are never really collected.

For each winning bundle we lexicographically maxi-
mize the minimum price in the bundle subject to the
constraints of Equation (8) at the g∗ we solved for ear-
lier. The formalities are provided in the appendix.24

Why this works may seem mysterious, so we turn
to three examples that illustrate what is happening
here. The following examples help explain the ability
of the RAD pricing rule to convey such information.25

Example 1. Let there be two objects labeled �A�B�
and three bidders labeled 1, 2, and 3. Suppose that
the following is true.
• Bidder 1 is the high bidder on the package �A�B�

with a bid of 10.
• Bidder 2 bid 8 for �A�.
• Bidder 3 has not bid but is willing to pay 4

for �B�.
In this situation, Bidder 1 holds the provisionally

winning bid, but Bidders 2 and 3 could combine to
outbid the current standing bid. Any prices such that
�A + �B = 10 and �A ≥ 8 will satisfy Equation (8).
However, if we choose �A = 10 and �B = 0, then Bid-
der 3 may bid 1 for �B� in the next round only to
find out that they lose. If �A = 8 and �B = 2, Bidder 3
will know that they have to bid at least 2 in order
to become provisionally winning. If Bidder 3 bids 3
on �B� and Bidder 2 resubmits his bid, then the new
provisional winners will be Bidder 2 with object �A�
and Bidder 3 with object �B�. The prices that would
be generated by RAD would be 8 for A and 2 for B.
Example 2. Let there be two objects labeled �A�B�

and three bidders labeled 1, 2, and 3. Suppose that
the following is true.
• Bidder 1 is the high bidder on the package �A�B�

with a bid of 10.
• Bidder 2 bid 4 for �A�.
• Bidder 3 has not bid, but is willing to pay 6

for �B�.
If we select �A = 4, then it must be that �B = 6.

Given this information, Bidder 3 will assume that it
is not profitable for them to bid. In a sense, it puts
all the burden of ousting the current standing bid on
Bidder 3. This could exacerbate the threshold prob-
lem. The more natural and fair decision is to “split
the difference” by setting �A = 5 and �B = 5.
The appropriate prices identified in Examples 1

and 2 are obtained, when ideal prices exist, by min-
imizing the maximum of �A��B subject to the prices
satisfying Equation (8).

24 A side benefit of this procedure is that we end up with a unique
set of prices. This is important for “respectability.” It is important
for bidder confidence that we get the same answer if we rerun the
algorithms.
25 The following examples assume the minimum increment is zero.
It is possible that a large minimum increment might upset some of
the usefulness of these prices.
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Example 3. Let there be three objects labeled
�A�B�C� and four bidders labeled 1, 2, 3, and 4. Sup-
pose that the following is true.
• Bidder 1 is the high bidder on the package

�A�B�C� with a bid of 30.
• Bidder 2 bid 25 for �A�B�.
• Bidder 3 bid 25 for �B�C�.
• Bidder 4 bid 22 for �A�C�.
• Bidder 3 is willing to pay 15 for �C�, but has

not bid.
Bidder 1 is the provisional winner. The prices we

want, if they exist, satisfy �A + �B + �C = 30, �A +
�B ≥ 25, �B + �C ≥ 25, and �A + �C ≥ 22. Because the
last three inequalities imply that �A+�B+�C ≥ 36, no
such prices can exist. We try to get as close as pos-
sible. We choose �A, �B, �C and g1, g2, g3 such that
�A + �B + g1 ≥ 25, �B + �C + g2 ≥ 25, and �A + �C +
g3 ≥ 22, and we want g1, g2, and g3 to be small. We
could minimize g1 + g2 + g3, or we could minimize
the maximum of g1, g2, g3. We could pick �A = �C =
9, and �B = 12, yielding g1 = g2 = g3 = 4. We could
also pick �A = �C = 11 and �B = 8 yielding g1 = g2 = 6
and g3 = 0. In the second case, relative to the first,
g1+g2+g3 is the same, but the maximum is more. In
the second case, a bidder for �B� knows exactly how
much they must bid to become provisionally winning.
However, the prices overvalue what someone must
bid on either �A� or �C� to become provisionally win-
ning. The prices in the first case overstate the value
of the bid required for all single items to become win-
ning, but the difference is less for �A� or �C� as com-
pared to the second case. The RAD pricing rule picks
the first case. In either case, Bidder 3 can bid for �C�
and, assuming Bidder 2 resubmits her bid, become a
provisionally winning bid.
If, on the other hand, Bidder 3’s value for �C� was

only 8.5, then Bidder 3 would only find it profitable to
bid when the price is �C = 8. If Bidder 3’s value was 7,
then he would not be willing to bid in either case
despite the fact that a bid of 7 could unseat Bidder 1’s
current high bid.
These prices help ease the two practical design

issues discussed earlier. First, the computation of
prices occurs by completing a series of nearly instan-
taneous linear programs. Therefore, the auctioneer
needs to conduct only one NP-complete computation,
the winner determination itself. Second, the prices
present information on the level of bidding for all
objects in a manner that is simple and natural for the
bidders. Instead of looking at prices on all subsets,
the bidders are presented with a price for each object.
There is one possible complaint one might register
about our pricing rule; individual prices will not
necessarily be increasing over time. This is because,
over time, the opportunities for new packages to
combine with old rejected packages to displace pro-

visional winners will change. This is an unavoid-
able feature of environments with complementarities
when only prices on items are used. It is important
to remember, however, that the sum over all prices is
always increasing, and our experimental tests of RAD
reported below indicate that subjects had no problem
with this feature.
There is no reason, in theory, to expect these prices

to work well or badly. However, we demonstrate,
through the use of human subject experiments, that
RAD can perform quite well across a number of rea-
sonable performance measures. As the reader will see
in the data below, this combination of pricing and
stopping rule works very well together to eliminate
strategic problems caused by the threshold problem.
Changing the SMR design to allow package bidding
with the particular pricing rule we designed generates
a significant increase in performance in environments
with multiple objects with complementarities.26 There
is also no degradation of performance in the goods
with no complementarities.

4. The Experimental Design
The environment used as a test bed for all auctions
in this paper was created by combining features of
the spatial fitting environment originally utilized by
Ledyard et al. (1997) and an additive environment.
Because the two value environments are combined
into one environmental test bed, we can see if there
are spillover problems from items with complemen-
tarities to those without complementarities. Specifi-
cally, the five participants were allowed to bid on
10 heterogeneous items labeled A, B, C, D, E, F , G,
H , I , and J . Bidder values for the first six items were
highly superadditive. Five separate draws of valua-
tions were determined in the following manner.
• The single-item packages, 
A�B�C�D�E� F , had

integer values drawn independently from a uniform
distribution with support &0�10'.
• The two-item packages,(

�A�B���A�C�� � � � � �E� F �
)
�

took integer values drawn independently from a uni-
form distribution with support &20�40'.
• The three-item packages,(

�A�B�C�� � � � � �D�E� F �
)
�

had integer values determined independently by draws
from a uniform distribution with support &140�180'.

26 Cybernomics (2000) reports on experiments in which a package
bidding extension for the SMR was tested that did not use prices,
but provided eligibility benefits for certain bids. In a different class
of environments, they find efficiency results similar to ours, but
the amount of time required to complete an auction was generally
longer. They were aware of our results prior to their work, but
chose not to adopt the pricing feature of our design.
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• The value for the six-item package,{
A�B�C�D�E� F ��

was drawn uniformly from &140�180'.
For each period, a total of 25 unique packages

and valuations were generated by the previous steps.
Each bidder was randomly given five of the pack-
ages. In order to obtain the value for a particular
package, the bidder had to obtain all objects in the
package, and the bidder could not include the same
object in multiple packages. The bidder’s value for
a disjoint combination of packages was given by the
summation of the package values. All other packages
had zero value to the bidder. In general, a combina-
tion of two three-item packages formed the largest
total value. However, the optimal package configura-
tion is typically overlapped by other competing pack-
ages. Therefore, these valuations were meant to be a
difficult test of any allocation mechanism. An indica-
tor of that difficulty is that, in Periods 3 and 5, com-
petitive equilibrium prices did not exist. In Table 1,
we provide a sample set of spatial fitting valuations
(Period 2). In this example, the efficient package com-
bination is �A�B�D� for Bidder 2 and �C�E� F � for
Bidder 5.
The valuations for the remaining four objects 
G�H�

I� J  were determined in an additive manner. Each
bidder had a valuation for each individual object
between 40 and 180. If a bidder obtained more than
one of these items, they received the sum of their val-
uations. Therefore, competitive equilibrium prices lie
between the highest and the second-highest valuation
for each of the objects. These items were added to
the spatial fitting environment for two reasons. First,
as we suspected that under some auction designs
bidders would be making net losses on the first six
objects, these objects would serve as a convenient tool
to ensure that bidders’ overall payoffs for the auction
were not negative.27 Second, performance in these
markets could provide a quick check of any auction’s
proficiency in the easiest of environments.
All sessions were conducted using members of the

Caltech community, primarily undergraduates. Five
subjects participated in each experimental session. In
each session, the number of auctions (or periods)
completed varied. No session lasted longer than three
hours. Subjects received new redemption value sheets
at the beginning of each new auction.
Bidder values were kept private. At the end of

each auction, subjects calculated their profits and con-
verted the token values into dollars. Subjects were
paid privately at the end of the experimental ses-
sion. In addition to participating in a practice auction,
all subjects had prior experience with the general

27 In reality, in many of the SMR auction sessions, even these four
additive objects were not enough.

Table 1 Values in a Spatial Fitting Example

Bidder 1
Packages: �F � �C�D� �B�C� F � �B�D� E� �A�B� E�

Values: 9 22 128 130 120
Bidder 2
Packages: �B� �D� F � �A�E� �A� F � �A�B�D�

Values: 8 28 24 27 130
Bidder 3
Packages: �C� �A� �D� �B�D� �A�B� F �

Values: 2 3 8 20 119
Bidder 4
Packages: �E� �A�B�C� �A�D� F � �B�D� F � �A�E� F �

Values: 10 117 112 128 125
Bidder 5
Packages: �C� F � �D�E� �C�E� F � �B� E� F � �A�B�C�D� E� F �

Values: 29 25 117 125 142

auction format; they had all participated in training
sessions that utilized simplified auction rules and
environments.
A total of 25 RAD and 17 SMR auctions were com-

pleted in 15 experimental sessions. The AUSM data
come from 12 auctions completed in previous experi-
ments reported by Ledyard et al. (1997).28

5. Performance Measures
When choosing an auction design, a variety of criteria
and measures may be used. In general, there will be
trade-offs between these measures; different auctions
will perform better depending on which measure one
focuses. For example, high efficiency may sometimes
come at the cost of seller revenue and the time to
complete the auction.

5.1. Efficiency
Efficiency is the most obvious choice of a performance
measure. It was, in fact, the original policy goal of the
FCC PCS auction design. In any environment, each
bidder has a set of valuations that can be indicated
as a (payoff) function V i) �0�1�K →�, where V i
y is
bidder i’s redemption value, the amount the experi-
menter will pay that bidder if they hold the combina-
tion of objects indicated by y at the end of the auction.
The maximal possible total valuation is

V ∗ =max
I∑
i=1
V i
yi

subject to
N∑
i=1
yik ≤ 1 for all k= 1� � � � �K

yi ∈ �0�1�K�

28 Due to the secondhand nature of the AUSM data, we could not
compare AUSM to RAD and SMR in all cases.
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If ��yi�Ii=1 is the final allocation chosen in an auction,
the efficiency of that auction is

E =
∑
i V

i
�yi
V ∗ �

It is true (see Ledyard et al. 1997) that the absolute
level of efficiency can be deceptive because one can
increase the percentage by simply adding a constant
amount to each V i function. This leaves the efficient
allocation unchanged, but increases E when E < 1.
However, we will only use efficiency to compare per-
formance across auctions in the same environment.
Therefore, this is not a problem for us.

5.2. Seller’s Revenue
If the auction designer happens to also be the seller,
he may be interested in maximizing revenue: the sum
of the final bids. Because revenue can vary signifi-
cantly across environments, we used the percentage
of the maximum possible surplus 
V ∗ that is actually
captured by the seller as our measure of seller rev-
enue. Revenue as a percentage of maximum possible
surplus is given by

R=
∑
i

∑
k �

∗
k �yi

V ∗ �

where �∗ is the vector of final prices. As with effi-
ciency, it is not the absolute value we care about, but
relative performance across auctions.

5.3. Bidder Profit
Bidder profit is another possible performance mea-
sure. With the presence of significant complemen-
tarities, some auction mechanisms can cause some
bidders to lose money (Bykowsky et al. 2000). A high
probability of losses can lead to a variety of perfor-
mance failures. Bidders may be unwilling to partici-
pate in auctions in which they know they are likely
to lose money. They may not bid aggressively, and
thereby cause efficiency losses. Losses may also lead a
bidder to default on payment contracts, which in turn
undermines the credibility of the auction. Increasing
the surplus to the bidders can, however, conflict with
a goal of high revenue for the seller. All other things
being equal (including efficiency of the auction), any
increase in bidder profits must come at the expense
of seller revenue. Therefore, while it may not be clear
why a designer would want to maximize bidder prof-
itability, there does seem to be a compelling reason
to avoid bidder losses. In all of the experimental ses-
sions we report on in this paper, a bidder’s profit on
the bid i is given by

P i = V i
�yit−�∗ · �yi�
where �∗ is the vector of final prices.

5.4. Net Revenue
Because of the possibility of bidder losses, we also
measure what the auctioneer might expect to actually

collect at the end of an auction. It is likely that bidders
who made losses would default on their payments
after the auction is over. Assume that any bidder that
would experience losses by completing the deal does
default on at least the portion of their bid that is not
profitable.29 What the auctioneer would actually col-
lect under these circumstances is given by net revenue
as a percentage of maximum possible revenue,

NR= 

∑
i

∑
k �

∗
k �yi+

∑
i L
i

V ∗ �

where

Li =
{
P i if P i < 0
0 otherwise�

In other words, revenue is only generated from the
portion of sales that are profitable for the bidder
as well.

5.5. Auction Duration
When analyzing iterative auctions, the duration of the
auction becomes a relevant concern. In this paper we
measure auction duration by the number of iterations
(rounds) before the auction is completed. Increased
iterations can reduce seller profitability because each
iteration typically has some fixed administrative costs
as well as the possible opportunity costs of foregone
rental revenue on the objects. Obviously, one could
hold an auction in one iteration as a sealed-bid auc-
tion, but that generally leads to lower efficiency and
revenue. There is a possible trade-off between auc-
tion duration and efficiency. Increased iterations may
allow high-value bidders to find the right package,
thus increasing efficiency.
Because the spatial fitting and additive environ-

ments were run simultaneously, the number of itera-
tions until the entire auction closed is not necessarily
an accurate performance measure of auction duration
for either environment. In order to determine the auc-
tion duration for the additive markets, we identified
the round in which these four markets would have
closed if there were no spatial fitting markets. For
example, an auction may have lasted 12 iterations,
but the last new bid on any of the additive valued
items occurred in the sixth iteration. Then, the auc-
tion for the additive environment would be said to
have ended in Iteration 7 because, assuming bidding
would have been identical, the auction for just the
additively valued objects would have ended after no
new bids were placed in the seventh round. While it
is possible that the addition of the spatial fitting envi-

29 Our measure of net revenue is designed to be conservative in
favor of revenue generation in auctions with losses. Therefore, we
only subtract the actual losses from the revenue amount. It might
be reasonable to assume that a bidder would default on their entire
payment if they ended the auction at a loss. This would obviously
greatly reduce the net revenue calculation.
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ronment may have altered bidding behavior on the
additive items, and vice versa, this measure seems to
be a reasonable proxy for the speed of the auction
in the additive environment. The symmetric measure
was used for the spatial fitting environment.

6. Results
In this section, we compare the performance of the
RAD, SMR, and AUSM mechanisms. The bottom line
is that in complex environments, RAD yields higher
efficiencies, higher net revenues, and lower bidder
losses than does SMR, and RAD does it in many fewer
iterations. Also, we find that AUSM lies somewhere
in between RAD and SMR in performance in complex
environments. There is no performance difference in
simple additive environments.

6.1. Results from the Spatial Fitting Test Bed
We begin by considering efficiency. The average auc-
tion efficiency across periods under the SMR design
was 67%. The average efficiency for the RAD design
was 90%. The continuous AUSM obtained an average
efficiency of 94%, which is not significantly different
from the results for RAD. Table 2 gives the results of
Wilcoxon-Mann-Whitney rank-sum pairwise compar-
isons of these three institutions.30 RAD significantly
improves the efficiency of the allocation over SMR in
all periods.
Conclusion 1. RAD yields efficiency at least as

high as AUSM and significantly higher than SMR.
These results appear to provide compelling evi-

dence that package bidding is an essential part of
an auction if complementarities exist and one desires
allocative efficiency. As further evidence of this, 20 out
of 25 (80%) auctions under RAD and 10 out of 12
(83%) auctions under AUSM led to full efficiency. This
is true in only 4 out 17 (24%) auctions using the SMR
design. The fact that both auctions that allow package
bidding yield dramatically higher efficiencies than the
SMR design suggests an obvious conclusion.
Conclusion 2. Package bidding significantly inc-

reases efficiency.
When package bidding was not allowed, SMR bid-

ders, as a whole, averaged losses of $7.73 in each
period for the markets with complementarities. In
RAD, where package bidding was permitted, bidders
earned positive profits on average (z= 2�83, p= 0�006).

30 The Wilcoxon-Mann-Whitney rank-sum test is a powerful non-
parametric substitute to the standard t-test when data has at least
ordinal measurement (Siegel and Castellan 1998). When examining
data generated from human subjects, it is typical to assume that
the data do not meet the assumptions required for a t-test. A high
test statistic, z, indicates that the second institution is stochastically
larger (in terms of the performance measure) than the first. The
reported ps are the p-values associated with the null hypothesis that
the first institution is greater than or equal to the second institution.

Table 2 Spatial Fitting Wilcoxon-Mann-Whitney Rank-Sum Test
Results

Institutions compared
Performance
measure SMR vs. AUSM SMR vs. RAD AUSM vs. RAD

Efficiency z = 3�29 z = 3�55 z = 0�332
p= 0�000 p= 0�000 p= 0�371

Bidder profits z = 3�05 z = 2�83 z = 0�584
p= 0�002 p= 0�006 p= 0�280

Net revenue z = 1�28 z = 2�23 z = 1�23
p= 0�100 p= 0�013 p= 0�109

Total bidder profit averaged $4.23 in RAD and $5.68
in AUSM. Table 2 gives the results of Wilcoxon-Mann-
Whitney rank-sum pairwise comparisons of these
three institutions. On an individual level, 30 out of
85 (35%) bidders lost money under the SMR auction.
Under RAD, only 4 out of 125 (3.2%) bidders ended
an auction with losses. Under AUSM, only 1 out 60
(1.7%) bidders ended an auction with losses.
Conclusion 3. Package bidding significantly inc-

reases average bidder profits and reduces individual
losses.
While the number of bidders with losses decreased

when package bidding was allowed, it is surpris-
ing that any bidders made losses. Without package
bidding, losses are to be expected. To win a pack-
age, bidders must put themselves at risk of obtaining
only part of the package. However, when package
bidding is allowed, bidders have no incentive to bid
for packages above their values. After closely exam-
ining the data from experiments where bidders were
allowed to bid on packages, we have some conjectures
as to why losses occurred. First, eligibility manage-
ment encourages bidders to bid on as many items as
possible in order to keep an option open. It is possi-
ble that bidders thought that an easy and relatively
risk-free method to keep their eligibility high was to
place small bids on single-item packages even if that
bid were higher than its true value. They may have
thought that it was very likely that someone would
value the object above their small bid and therefore
they would not lose money from this bid. However,
at times these small bids were sufficiently large to be
winners. In a few experiments, we observed behavior
consistent with this rationale. The strategic implica-
tions of eligibility management remains to be seriously
studied. However, it is clear that it leads to bids that
are inconsistent with short-run value maximization.31

Second, if a bidder makes a mistake in bidding
in early iterations, it may be difficult to escape from
it. For whatever reasons, bidders occasionally placed
bids that were inconsistent with their valuations.
A simple example of this occurs if a bidder had a

31 The use of XOR bids is one obvious solution to this problem.
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value of 100 for the package �A�B�C�, and a value
of no more than 25 for any two-item subsets. If that
bidder intended to place a bid of 50 on �A�B�C�, but
through negligence missed indicating C, they would
have a bid of 50 on �A�B�, yielding a loss of 25 if no
one ever bids higher.32 If those bids were sufficiently
high, no other bidder would be able to rescue them by
out bidding them.33 One interesting, but little studied,
aspect of practical auction design is the prevention of
“typos:” unintentional errors in data entry. The hard
part is separating “typos” from strategic moves later
claimed to be mistakes. We do not pursue this here.
Seller net revenue as a percentage of maximum

possible revenue was 74% and 69% under RAD and
AUSM, respectively. The SMR auction, on the other
hand, averaged a net revenue of only 61%. Both RAD
and AUSM yield significantly higher net revenue than
does SMR. In Table 2, we provide Wilcoxon-Mann-
Whitney rank-sum pairwise comparisons of the net
revenue of the three auction types. The package-bid
auctions generally are expected to collect all of the
revenue generated by the auction. However, the rev-
enue for SMR is reduced from the apparent amount of
96% to the realistic expectation of 61% due to the sub-
stantial bidder losses. Because there are few instances
of bidder losses under package bidding, actual rev-
enue under RAD and AUSM is close to net revenue,
at 79% and 71%, respectively.
Conclusion 4. Package bidding significantly in-

creases seller net revenues—those revenues the seller
can expect to collect.
RAD yields somewhat higher net and absolute

revenue than AUSM, which implies that the RAD
design is able to extract more of the surplus from
the bidders. Using a Wilcoxon-Mann-Whitney rank-
sum test, we find that revenue as a percentage of
maximum surplus is significantly greater under RAD
(z= 1�62, p= 0�055). We conjecture that this is because
the second-highest bidders, the ones whose bids drive
the winners to increase their bids, are more easily able
to find and express their willingness to pay in the
iterative mode than in a continuous mode.
Auction duration, measured as the number of iter-

ations before completion of the auction, was signifi-
cantly shorter under RAD. Using the same price incre-
ment rule in both SMR and RAD, the SMR auctions
averaged 16.2 iterations as compared to 3.32 for RAD.
A Wilcoxon-Mann-Whitney rank-sum test indicates
that the auction duration is significantly shorter under

32 This actually happened to one of the authors during early soft-
ware tests.
33 Under the iterative design, if a bidder realized his mistake before
the completion of that round, he could delete the bid. It is easy to
imagine that a similar errors could be made in a continuous auction
without any hope for correction.

the RAD design than in the SMR auction (z= 4�98,
p = 0�000). In fact, it often took longer to complete
the additive markets than the spatial fitting items (see
Conclusion 9). Because the AUSM mechanism was
a continuous auction, it is obviously not possible to
directly compare the speed of these two formats.
Conclusion 5. Auction duration is shortest under

RAD.

6.2. Results from the Additive Test Bed
In this section, we report on the results for the four
objects that had additive valuations for all bidders.
In general, the efficient allocation would require only
single-item bids among the additive objects, so pack-
age bids would occur only if bidders were attempting
a sophisticated strategy34 to capture a larger share of
the objects. However, this rarely happened. In only
3 of 25 RAD auctions do the final winning bids con-
tain packages of additive objects. Further, in these
three auctions the final allocations involve package
bids across additive and other objects.35

Conclusion 6. Package bids rarely occur among
the winning bids in the additive environment.
Although bidders are clearly willing to bid on pack-

ages in the additive environment, they are rarely able
to use this ability to their advantage, as is evidenced
by the extremely high levels of efficiency achieved
in the additive environment. A 100% efficient auc-
tion indicates that all the possible gains from trade
(surplus) have been captured by either the bidders
or the seller. As expected, all auctions did quite well
in terms of efficiency in this environment. In most of
the auctions, the four objects were allocated to the
highest-valuing bidders: 20 of 25 (80%) for RAD and
15 of 17 (88%) auctions for the SMR auction. The
AUSM design lead to full efficiency in the additive
environment in 10 out of 12 (83%) auctions. There
were no significant differences in the level of effi-
ciency achieved by any of the mechanisms. There-
fore, package-bidding auctions, specifically RAD, do
not seem to degrade auction performance in simple
settings.
Conclusion 7. In the additive environment, under

RAD, SMR, and AUSM, efficiency is very near 100%.
There are no discernible differences between the
auctions.
In the additive environment, there was very little

difference in the revenue collected by the seller under
SMR and RAD. The SMR and RAD mechanisms aver-
aged 69.96% and 71.96% of the maximum possible

34 Such a strategy might be to create an artificial threshold that would
yield a possible problem for others, allowing the bidder to get the
items even if it were not an efficient allocation.
35 We used the final prices to estimate the portion of the bid occur-
ring in the additive environment.
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revenue, respectively. A rank-sum test also shows no
significant difference between the observed revenues.
Conclusion 8. In the additive environment, the

auction institutions yield similar seller revenue.
RAD yielded lengths that were significantly shorter

than the SMR. The average auction duration under
the SMR auction was 11.7 iterations, but was only
6.1 for RAD.36 A Wilcoxon-Mann-Whitney rank-sum
test indicates that the auction duration is significantly
shorter under the RAD design than in the SMR auc-
tion (z= 4�67, p= 0�000). As before, there is no direct
comparison with the speed of AUSM.
Conclusion 9. In the additive environment, auc-

tion duration is shortest under the RAD design.
Because package bidding has no advantage in

the additive environment, and assuming all bids in
the additive markets are on the individual items the
prices, we were surprised by this result. A potential
explanation for this difference is that RAD allows bid-
ders to quickly learn about the outcomes in the spatial
fitting portion of the market. They can then turn their
attention to the additive markets.

7. Conclusions and Open Issues
7.1. Conclusions
The experimental test results point to two clear con-
clusions.
1. The option to bid for packages clearly improves

performance in difficult environments and does not
degrade performance in simple environments.
2. RAD dominates SMR in efficiency, net revenue

auction duration, and protecting bidders from losses.
The general principle that package bidding is an

important option for multiobject auctions in envi-
ronments with significant complementarities is reaf-
firmed by the evidence. Auctions that only allow
bidding on single items almost always exhibit lower
levels of allocative efficiency and higher bidder losses.
When auctions are run in an iterative mode, single-
item-only bidding can also lead to much longer
auctions. The only redeeming feature of these auc-
tions seems to be their revenue-generating capabili-
ties. Unfortunately, much of that revenue comes from
losses to bidders, as opposed to increased surplus
extraction. This may be acceptable in the short run
if it can be collected. However, if the design is used
repeatedly, bidders will learn to avoid these losses,
perhaps by avoiding the auction altogether, and effi-
ciency and revenue will ultimately suffer.
However, we have gone further here than simply

establishing that package bidding is sensible. We have

36 These results are, of course, confounded by the fact that the
length of the additive part of the auction is the round after which
no new bid is made on an additive object. This is not necessarily
independent of the existence of the spatial part of the auction.

provided a new auction design, RAD, which clearly
outperforms others. Relative to the SMR design,
RAD produces higher efficiency, greater net revenue,
greater bidder profits, and a much quicker time to
completion. It even produces similar efficiencies to,
and higher revenues than, the continuous AUSM with
a standby queue. Because RAD uses a pricing rule
instead of a queue to mitigate the threshold problem,
it is no more complex from a bidder’s point of view
than the SMR auction and significantly simpler than
the continuous AUSM. Finally, there is no evidence
of degradation in performance when RAD is used in
simple, additive environments.
Why do we think RAD worked so well? We believe

it is the decentralizing influence of the prices. Under
the SMR mechanism, prices were only calculated from
single-item bids. Therefore, if bidders were not bid-
ding above their valuations, in this environment, it is
guaranteed that the single-item prices would be much
lower than the actual winning bids for the packages.
If we consider the sample parameters given in Table 1,
the maximum prices for bidders unwilling to expose
themselves to potential losses are: 3, 8, 2, 8, 16, and 9
for the first six items.37 The competitive prices, which
do exist in this case, are 38, 49, 30, 43, 38, and 49. If
we examine the data for this parameter set (Period 2),
we find that this difference between stand-alone and
competitive prices is prevalent experimentally. The
RAD prices, however, are close to the competitive
prices. In general, we would expect final prices to be
somewhat lower than the competitive prices due to
the bid increment requirement, which made the true
price higher than that reported here. Once the manda-
tory bid increment is considered, the RAD prices
are not significantly different from the competitive
prices for five of the six objects. In the RAD mecha-
nism, prices are calculated using all bids. Therefore,
in general, they will more closely represent the level
of competition for an item. As the prices are typically
calculated in order to indicate the level of competi-
tion below the winning packages, they can indicate to
bidders markets where bidding is thin. Thus, prices
aid in finding an appropriate fit.

7.2. Open Issues
It would seem that the RAD design would be a natu-
ral candidate for use as a multiobject iterative auction
in its current form. However, in spite of the excel-
lent performance in our tests, there are at least two
problem areas that might be considered for redesign.
The first, and simplest to fix, is a result of the eli-
gibility rule. If bidders have budgets for items, they

37 These are simply the maximal single-item values. The only way
prices under the SMR design could be higher is if someone bid on
a single item above their value.
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may find themselves bidding for, and even winning,
items that have little value to them simply to preserve
eligibility. While this problem has generally been rec-
ognized even when there is no package bidding, we
know of no papers that purport to provide a solution.
There is, nevertheless, a straightforward solution: the
use of exclusive “XOR” bids in an iterative auction.
Bidders would be allowed to place a bid saying “I bid
$1,000 for A, B and C, OR I bid $800 for D and E.” The
appropriate constraints would be added to the alloca-
tion problem (1) and the rest of the mechanism would
be left as is. This could be done to the SMR rules as
well as to RAD and others. XOR bids may appear to
increase a bidder’s problem complexity a bit, but such
bids do eliminate the anxiety and confusion raised by
the need to find “safe places” to preserve eligibility.
A second problem with the RAD design is that,

although the pricing rule seems to guide and coordi-
nate small bidders to solve the threshold problems,
it can also orphan some bidders at early stages even
though they belong in the efficient allocation. An
example will illustrate.
Example 4. Suppose in Round 5 there are four bids

submitted as follows:
• Bid #1 for �A�B�C� at 99.
• Bid #2 for �A�B� at 75.
• Bid #3 for �A�C� at 75.
• Bid #4 for �B�C� at 75.

Under the RAD design, Bid #1 wins and the prices38

are 
�A�B�C = 
33�33�33. Now suppose there is a
bidder who is willing to pay 30 for �A�. Had they
bid 28 for �A� in Round 5, they would have been a
winning bid along with Bid #4, but now they cannot
bid because �A > 30. This may lower efficiency. There
are several features of RAD that work against such
orphaning. First, if this bidder had bid in Round 5,
they would not have been orphaned, so aggressive
participation helps. Second, suppose in Round 6 that
Bid #3 is not resubmitted, but Bids 1, 2, and 4 are.
Then, 1 still wins and � = 
24�51�24.39 If it gets to
this stage, our bidder for A can re-enter the fray if
they still have the eligibility to do so. Of course, if the
auction stops in Round 5, which it will if there are
no additional new bids, it will end at an inefficient
allocation.
The crucial point to remember is that, in spite of

these problems, RAD attains high efficiency and out-
performs SMR. Clearly, the problems facing bidders
in SMR, like the exposure problem, are more severe
than those problems that face them in RAD.

38 Notice that these are not separating prices, which is what causes
a problem.
39 These are separating prices. This also shows that prices are not
necessarily monotonically increasing (since 24 < 33). The sum of
prices is, however, always increasing.
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Appendix
In §3.3, we indicated that the RAD auction-pricing algo-
rithm (8) might not yield a unique price vector. We
use the following lexicographic routines to eliminate that
ambiguity.40

Let g∗, �∗, and Z∗ solve (8). If Z∗ = 0, then go to Prob-
lem (10) below. If Z∗ > 0, let J ∗ = �j ∈ Lt �Z∗ = g∗j �. If J ∗ = Lt ,
then go to (10) below. Otherwise,

min
�t�Z�g

Z (9)

subject to ∑
k∈K
�tkX

j
k = pj for all 
pj� xj  ∈Wt

∑
k∈K
�tkX

j
k+ g∗j = pj for all 
pji � x

j  ∈ J ∗
∑
k∈K
�tkX

j
k+ gj = pj for all 
pji � x

j  ∈ Lt\J ∗

0≤ gj ≤Z for all 
pji � x
j  ∈ Lt\J ∗

�t ≥ 0�
Let �Z, �g, ��, be the solution to (9). If �Z = 0, go to 10 below.
Otherwise, let �J = �j � �Z= �gj�. If J ∗ ∪ �J = Lt , then go to Prob-
lem (10) below. Otherwise, let J ∗ = J ∗ ∪ �J and go to (9) again.
When the iteration on (9) is complete we will have prices

that approximate our “ideal” but not always obtainable
prices. They may still not be unique. Therefore, we go
through a sequence of iterations that eliminate nonunique-
ness and that create prices to guide bidders to solve the
threshold problem. Let �g be the solution from the last iter-
ation of (9). Let �K =K.

max
Y ��

Y (10)

subject to ∑
k∈K
�tkx

j
k = pj for all 
pj� xj  ∈Wt

∑
k∈K
�tkx

j
k+ �gj = pj for all 
pj� xj  ∈ Lt
�tk ≥ Y for all k ∈ �K� (11)

Let Y ∗, �∗ solve (10). Let K∗ = �k ∈ K � �tk = Y ∗�. Let
�K = �K\K∗. If �K �= 
, return to (10) and solve it by replacing
(11) with

�tk ≥ Y for all k ∈ �K
�tk = �∗tk for all k ∈K\ �K�

When �K =
, we are done, and the prices �∗ = �t+1. These
are unique, approximate the ideal prices, and provide sig-
nals about thresholds.

40 An alternative approach would minimize
∑
j 
g

j 2 in (8), which
would avoid iteration. We chose to stick with linear programs for
computational simplicity and a desire to minimize the number of
bids missed rather than the total size of the miss.
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